Product-Bank
 Functions of angles Calculator

Sides of a triangle:
a:      b:      c:
Angles of a triangle (°):
A:      B:      C:
(Enter either "3 sides" or "2 sides and 1 angle" or "1 side and 2 angles" above)
a / SinA = b / SinB = c / SinC
a = bSinA / SinB    or    a = cSinA / SinC
b = aSinB / SinA    or    b = cSinB / SinC
c = aSinC / SinA    or    c = bSinC / SinB
a2 = b2 + c2 - 2bcCosA
b2 = a2 + c2 - 2acCosB
c2 = a2 + b2 - 2abCosC
Example: If a is 1, A is 20° and B is 45° then find b, c, and C.
Answer:    b = aSinB / SinA     b = 1*Sin45 / Sin20     b = 0.7071 / 0.342 = 2.067
                 C = 180 - (A + B)     C = 180 - (20 + 45) = 115
                 c = aSinC / SinA     c = 1*Sin115 / Sin20     c = 1*0.906 / 0.342 = 2.650
                 b = 2.067,     c = 2.65,     C = 115°
If A = 90°
Sides of a triangle:
a:      b:      c:
Angles of a triangle (°):
 A:    90°       B:      C:
(Enter either "2 sides" or "1 side and 1 angle" above)
If  a & b;    c = √a2 - b2;    SinB = b / a;    C = 90 - B
If  b & c;    a = √b2 + c2;   tanC = c / b;    B = 90 - C
If  a & c;    b = √a2 - c2;    SinC = c / a;    B = 90 - C
If  a & ∠B    b = aSinB;    c = aCosB    C = 90 - B
If  a & ∠C    b = aCosC;    c = aSinC    B = 90 - C
If  b & ∠B    a = b / SinB;    c = bCotB    C = 90 - B
If  b & ∠C    a = b / CosC;    c = btanC    B = 90 - C
If  c & ∠B    a = c / CosB;    b = ctanB    C = 90 - B
If  c & ∠C    a = c / SinC;    b = cCotC    B = 90 - C
Example: If a is 5, b is 3 then find c, B and C.
Answer:    c = √a2 - b2,    c = √52 - 32,     c = 4
                 SinB = b / a,     SinB = 3 / 5,     B = Sin-1(.6),     B = 36.87
                 C = 90 - B,     C = 90 - 36.87,     C = 53.13
                 c = 4,     B = 36.87°,     C = 53.13°