Product-Bank
 Coordinate Converter Calculator

Cartesian to Polar:
x:      y:     
Polar Coordinates:
r  =  √(x2 + y2)     θ  =  atan(y/x)
Example: Convert the cartesian coordinates (5, 4) into polar coordinates?
Answer:    r  =  √(52 + 42)  =  6.40     θ  =  atan(4/5)  =  38.66
Polar to Cartesian:
r:      θ:     
Cartesian Coordinates:
x  =  r * cos(θ)     y  =  r * sin(θ)
Example: Convert the polar coordinates (3, 250) into cartesian coordinates?
Answer:    x  =  3 * cos(250)  =  -1.03      y  =  3 * sin(250)  =  -2.82
Spherical to Rectangular:
r:      φ:      λ:     
Rectangular Coordinates:
x  =  r * cos(φ) * cos(λ)     y  =  r * cos(φ) * sin(λ)     z  =  r * sin(φ)
Example: What are the rectangular coordinates of the spherical coordinates (10, 50, 100)?
Answer:    x  =  r * cos(φ) * cos(λ)  =  10 * cos(50) * cos(100)  =  -1.12     y  =  r * cos(φ) * sin(λ)  =  10 * cos(50) * sin(100)  =  6.33     z  =  r * sin(φ)  =  10 * sin(50)  =  7.66
Rectangular to Spherical:
x:      y:      z:     
Spherical Coordinates:
r = √x2 + y2 + z2      φ = atan(z / √x2 + y2)      λ = atan(y / x)  (for x > 0, y > 0)
λ = π + atan(y / x)  (for x < 0)      λ = 2π + atan(y / x)  (for x > 0, y < 0)
Example: What are the spherical coordinates of the rectangular coordinates (-1.12, 6.33, 7.66)?
Answer:    r = √x2 + y2 + z2 = √(-1.12)2+(6.33)2 + (7.66)2 = 10      φ = atan(z / √x2 + y2) = atan(7.66 / √(-1.12)2+(6.33)2) = 50      λ = π + atan(y / x)  (for x < 0) = 3.14 + atan(6.33 / -1.12) = 100
Cylindrical to Rectangular:
r:      θ:      z:     
Rectangular Coordinates:
x  =  r * cos(θ)     y  =  r * sin(θ)     z  =  z
Example: What are the rectangular coordinates of the cylindrical coordinates (10, 50, 100)?
Answer:    x  =  10 * cos(50)  =  6.43     y  =  10 * sin(50)  =  7.66     z  =  z  =  100
Rectangular to Cylindrical:
x:      y:      z:     
Cylindrical Coordinates:
r  =  √x2 + y2     θ  =  cos-1( x / √x2 + y2)     z  =  z
Example: What are the cylindrical coordinates of the rectangular coordinates (6.43, 7.66, 100)?
Answer:    r  =  √x2 + y2 = √(6.43)2 + (7.66)2 = 10     θ  =  cos-1( x / √x2 + y2) =  cos-1( 6.43 / √(6.43)2 + (7.66)2) = 50     z  =  z = 100